
Copyright is held by the author / owner(s). 
SIGGRAPH 2012, Los Angeles, California, August 5 – 9, 2012. 
ISBN 978-1-4503-1435-0/12/0008 

Building the Snow Footprint Pipeline on Brave
Keith Klohn Michael O’Brien Tim Speltz Tom Wichitsripornkul

Pixar Animation Studios

Early pre-production plans for Brave called for Scotland to be dom-
inated almost entirely by snow. Our task was to come up with be-
lievable snow that would look and act naturally when characters
interacted with it.

To make computer generated snow feel and look real, we knew we
would need to develop a sophisticated pipeline to be visually con-
vincing and also sufficiently automated to the point of enabling a
small team of artists the ability to complete a large number of shots
within the our production budget.

We discuss our implementation of our snow interaction pipeline as
well as address some of the technical challenges we encountered
along the way.

Figure 1: Character-snow interaction in Brave. c©Disney / Pixar.
All rights reserved.

1 Snow Trenching: Adaptive Subdivision

Our previous method of character to ground interaction was gen-
erally solved using a ground shader with animated displacement
maps that were carefully timed to match the character’s movement.
This technique worked reasonably well for shallow ground pene-
tration but was insufficient in situations where deeper depths were
needed, especially in cases where a collision mesh was needed for
both particle dynamics and character cloth. As a result, we de-
veloped a series of Surface Operators (SOPs) in SideFX’s Houdini
using RenderMan’s (prman) hierarchical subdivision (hsubdiv) edit
mesh library to adaptively subdivide the polygonal mesh (snow sur-
face) around a character’s feet. Depending on the motion and size
of the geometry ”penetrating” the snow mesh, the points of this re-
fined mesh were distorted to create trenches and berms based on
attributes such as depth and directionality of the imprint. We then
would use this distorted hsubdiv edit mesh as a collision surface
and we also tagged specific shading attributes onto the mesh points
for later use in shading. Both the original surface and the newly
created hsubdiv edit mesh would be exported together as a single
model and rendered with RenderMan.

2 Snow Debris: Particles and Instances

Along with trenching the polygonal mesh, we added more realism
by implementing a pipeline to generate snow dust (particles) and

clumps (instances). One way we achieved this realism was to base
the volume, velocity, and clustering of the ejected snow material on
the motion characteristics of the character that created them. For
example, the faster and deeper the character penetrated the snow de-
termined not only the region where emission would occur, but also
the amount and speed of material that would be emitted. We kept
track of how much volume in snow was lost from frame to frame
and would use that difference in volume as the active region where
particle emission would occur. We called this technique temporal
volume differencing and it provided a useful means of achieving a
more realistic look to the amount of snow and debris that would be
kicked up by character walking, running, or sliding through snow.

3 Snow Shading: Primitive Variables,

Point Clouds, and Ambient Occlusion

Pushing the trenching of the snow into the polygonal mesh itself
gave us the basis of our look and also provided a collision mesh for
other purposes. However, only shading could provide us that final
level of realism we needed to visually blend the snow surface to the
particles and instances that settled around it. Therefore, we widely
utilized primitive variables (primvars) to store per-vertex informa-
tion on the mesh that was later used by the snow surface’s shader.
Trenching and berming data that was previously used to displace
the points of the hsubdiv edit surface were also used to define re-
gions where higher frequency detail could be added with shading.
This allowed us to fine tune the displacement both in and around the
trench and provide a way to control the color and light attenuation
of the subsurface scattering. Additionally, we used point clouds to
define the location of snow debris and clumps that had landed on
the snow surface. These point clouds stored information about lo-
cation, size, and velocity and were read into the snow shader. From
this we were able to create directional berms, divots, and holes that
helped integrate the snow surface and particle data.

The last important step that pushed the sense of realism for this
pipeline was the use of ambient occlusion in the lighting passes.
Ambient occlusion provided a way of making particles and in-
stances seem like they were part of the same surface and visually
blended any intersections.

4 Renderfarm: Simulations and Caches

Considering the large number of snow shots that were originally in
Brave, our artists needed a way to quickly turn around shots. There-
fore a large engineering effort was put forth between our effects de-
partment and our render pipeline group (RPG) to provide a means
to be able to off-load our Houdini tasks to the renderfarm including
particle/fluid simulations and computationally expensive geometry
caches. As a result, several Render Operators (ROPs) were devel-
oped for Houdini that enabled us to submit any arbitrary type of
data to the renderfarm, either in serial or parallel. This enabled us
to setup complex simulation and geometry tasks for an entire shot
and became the backbone for automating the majority of the snow
pipeline from start to finish.


